

Wakarimasen docs

わかりません！

Contents:

	Installation
	Requirements

	Installing dependencies

	Basic installation (CGI)

	Webserver configuration
	Apache

	Nginx

	Lighttpd

	uWSGI

	Commandline actions
	Servers

	Admin actions

Installation

Wakarimasen is still experimental software - use it at your own risk and
if you know how to fix stuff when it breaks.

Requirements

	Shell access to the server

	Python >= 2.6, <= 3

	Werkzeug

	SQLAlchemy >= 0.8

	Jinja2

	ImageMagick commandline tools (convert and identify)

	file command

Supported deployment methods

	uWSGI

	FastCGI

	CGI (fallback)

Supported webservers

	Apache: Completely supported

	nginx: Works, but a few features such as bans rely in .htaccess

	lighttpd: Works, but same as nginx.

Development server included (python wakarimasen.py http)

Note on root access

Most instructions in here assume that you have at least a virtual
private server with root access. However, it’s technically possible to
install requirements using
virtualenv [http://www.virtualenv.org/en/latest/virtualenv.html] and
use wakarimasen over cgi or fastcgi if already configured in a shared
server.

Installing dependencies

All dependencies should be available from the package manager of the
average linux distro.

If the python dependencies are too old, you could install them with
pip [http://www.pip-installer.org/en/latest/quickstart.html] instead.
If you don’t want or can’t do system-wide installs of python packages,
virtualenv [http://www.virtualenv.org/en/latest/virtualenv.html]
exists and integrates nicely with pip.

If you don’t have convert, identify or file, and can’t
install them with a package manager system-wide, well, hope you don’t
mind not having images in the imageboard.

Basic installation (CGI)

This section explains the simplest setup, assuming that your webserver
already has CGI working. If you need to configure your webserver for cgi
or something more efficient than cgi, see Webserver configuration

	First, place the source code somewhere in the docroot. That is, the
wakarimasen.py file should be where you’d put an index.html file.

	Copy config.py.example to config.py. Edit it and set ADMIN_PASS,
SECRET and SQL_ENGINE. The format for SQL_ENGINE is the
following:

SQL_ENGINE = 'mysql://USERNAME:PASSWORD@HOSTNAME/DATABASE'

You can also use sqlite:

SQL_ENGINE = 'sqlite:///wakarimasen.sqlite'
SQL_POOLING = False

Note that this will create the database in the current directory -
please avoid exposing it to the webserver!

	Now make sure the shebang line in wakarimasen.py points to the right
python interpreter (the default is #!/usr/bin/python2, do not use
a python 3.x interpreter) and that the file has execute permissions.
If you use suexec for cgi, it must be chmod 755, too.

Visit http://example.com/wakarimasen.py - This will check for any
configuration errors in your installation, and if everything is okay,
it should open the first time setup page. Enter the ADMIN_PASS
here.

	To create a new board called /temp/, copy the base_board directory:

cp -r base_board temp

Edit temp/board_config.py. Important settings are NUKE_PASS, TITLE
and SQL_TABLE. Keep in mind most of those options are not supported
for now (captcha, load balancing, proxy, etc).

	Go to http://example.com/wakarimasen.py?board=temp - This should
rebuild the cache and redirect you to your board.

Webserver configuration

Apache

CGI

TODO (Should be very similar to the first steps of FastCGI setup..)

FastCGI

Add this to your config:

DirectoryIndex wakaba.html

<Directory "/path/to/wakarimasen">
 Options +ExecCGI
</Directory>

Choose either mod_fastcgi:

LoadModule fastcgi_module modules/mod_fastcgi.so
<IfModule fastcgi_module>
 AddHandler fastcgi-script .fcgi
</IfModule>

Or mod_fcgid:

LoadModule fcgid_module modules/mod_fcgid.so
<IfModule fcgid_module>
 AddHandler fcgid-script .py .fcgi
</IfModule>

Nginx

CGI with fcgiwrap

See this page [http://wiki.nginx.org/Fcgiwrap] for fcgiwrap
installation details.

Then add this to the server block:

index wakaba.html;
include /etc/nginx/fcgiwrap.conf;

You should ensure that fcgiwrap.conf includes a location block, and that
it matches wakarimasen.py (sometimes it’s limited to .cgi files). If it
doesn’t have a location block, put that include inside one:

location /wakarimasen.py {
 include /etc/nginx/fcgiwrap.conf;
}

If you don’t do this, fcgiwrap might do weird stuff like throwing ‘502
bad gateway’ errors for most files.

FastCGI servers

Recent versions of wakarimasen have TCP and unix socket based standalone
fastcgi servers. To use them, start wakarimasen.py like this:

start a tcp fcgi server with the default settings, in 127.0.0.1:9000
python wakarimasen.py fcgi_tcp

bind tcp fcgi server to a certain ethernet interface, port 9001
python wakarimasen.py fcgi_tcp 192.168.0.1 9001

start a unix socket fcgi server in /tmp/derp
python wakarimasen.py fcgi_unix /tmp/derp

In the nginx config:

index wakaba.html;
location /wakarimasen.py {
 include /etc/nginx/fastcgi.conf;
 fastcgi_pass unix:/tmp/derp;

 # or: fastcgi_pass 127.0.0.1:9001;
}

When using unix sockets, check that the file is readable by the nginx
user.

Nginx doesn’t have a fastcgi process spawner. You’ll have to write a
init script, a systemd unit, or use something like
supervisor [http://supervisord.org/configuration.html#fcgi-program-x-section-settings].

Or just leave the thing running in a tmux/screen session, only to find a
few weeks later that your wakarimasen has been offline for a long time
because your server mysteriously rebooted.

Lighttpd

CGI

Just add this to the config:

server.modules += ("mod_cgi")
cgi.assign = (".py" => "/usr/bin/python2")
index-file.names += ("wakaba.html")

As an nginx fanboy I’m slightly annoyed at how easy this was.

FastCGI

TODO

uWSGI

uWSGI is probably the best deployment setup. It can also be the most
complex to setup. This document is not going to cover the details, but
you can check the uWSGI
docs [http://uwsgi-docs.readthedocs.org/en/latest/]. In particular:

	The
quickstart [http://uwsgi-docs.readthedocs.org/en/latest/WSGIquickstart.html]
gives a rough outline of the process.
	Note: wakarimasen can’t run directly with the uwsgi http server
for now, you need to put it behind a real webserver.

	Note: The uwsgi “network installer” is awesome, try it out.

	Using the
emperor [http://uwsgi-docs.readthedocs.org/en/latest/Emperor.html]
can raise the enterpriseness of your setup significantly.

	The web server
integration [http://uwsgi-docs.readthedocs.org/en/latest/WebServers.html]
page gives several alternatives for each server.
	There are a few modules for apache. You have to grab them from the
uwsgi git repo and run the specified apxs command to compile
and install.

	Nginx has built-in support of uwsgi. That page describes how to
use it.

More detailed instructions soon™

Commandline actions

Wakarimasen includes a few administrative commands that can be used from
the commandline.

To use them, do:

python wakarimasen.py <command> [parameters]

To see usage info of an individual command, do:

python wakarimasen.py help <command>

Servers

	fcgi_tcp [host [port]]

Starts a standalone FastCGI server over tcp. Defaults to listening on
127.0.0.1, port 9000

	fcgi_unix <path>

Starts a standalone FastCGI over unix socket. The path is required,
and you should ensure the permissions allow the webserver to connect.

	http [host [port]]

Starts a http server for development/testing purposes. Do not use in
production, even cgi is better than this.

Admin actions

	delete_by_ip <ip> <boards>

<boards> is a comma separated list of board names.

	rebuild_cache <board>

	rebuild_global_cache

Admin actions require some knowledge about the webserver environment.
For this reason, you need to pass the following environment variables

	DOCUMENT_ROOT: full filesystem path to html files.
Example: /srv/http/imageboard.example.com/

	SCRIPT_NAME: url to wakarimasen.py without host part.
Example: /wakarimasen.py

	SERVER_NAME: hostname of the webserver.
Example: imageboard.example.com

	SERVER_PORT: port of the webserver (optional).
Example: 80

If these values are wrong, it will probably result in a bunch of broken
links in the generated pages. Try rebuilding cache from the real web
interface.

Complete example usage:

DOCUMENT_ROOT=$PWD SCRIPT_NAME=/wakarimasen.py SERVER_NAME=0.0.0.0 \
 python wakarimasen.py rebuild_global_cache

You could also have a script that sets this for you.

Index

 nav.xhtml

 Table of Contents

 		Wakarimasen docs

 		Installation

 		Requirements

 		Supported deployment methods

 		Supported webservers

 		Note on root access

 		Installing dependencies

 		Basic installation (CGI)

 		Webserver configuration

 		Apache

 		CGI

 		FastCGI

 		Nginx

 		CGI with fcgiwrap

 		FastCGI servers

 		Lighttpd

 		CGI

 		FastCGI

 		uWSGI

 		Commandline actions

 		Servers

 		Admin actions

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

